Graphs of polynomial functions are smooth and continuous.

- **smooth**: graph contains only rounded corners. No sharp corners.
- **continuous**: graph has no breaks and can be drawn without lifting the pencil.
Definition of a Polynomial Function

Let \(n \) be a nonnegative integer and let \(a_n, a_{n-1}, \ldots, a_2, a_1, a_0, \) be real numbers with \(a_n \neq 0 \). The function defined by

\[
f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_2 x^2 + a_1 x + a_0
\]

is called a polynomial function of \(x \) of degree \(n \). The number \(a_n \), the coefficient of the variable to the highest power, is called the leading coefficient.
Zeros of Polynomial Functions

If f is a polynomial function, then the values of x for which $f(x)$ is equal to 0 are called the zeros of f. These values of x are the roots of the polynomial equation $f(x) = 0$.
Repeated Zero with Multiplicity k

In factoring the equation for the polynomial function f, if the same factor $x - r$ occurs k times, but not $k + 1$ times, we call r a repeated zero with multiplicity k.

$$f(x) = (x - r)^k.$$
Repeated Zero with Multiplicity k

For the polynomial

$$f(x) = 2x(x - 7)^2(x + 5)^3$$

0 is a zero with multiplicity 1
7 is a zero with multiplicity 2
−5 is a zero with multiplicity 3.
Multiplicity and x-intercepts

If r is a zero of even multiplicity, then the graph touches the x-axis and turn around at r.

If r is a zero of odd multiplicity, then the graph crosses the x-axis at r.